N87-16427

ACCURACY AND LONG-TERM STABILITY OF AMORPHOUS-SILICON MEASUREMENTS

JET PROPULSION LABORATORY

R. Mueller

Presentation Overview

- MEASUREMENT SYSTEM REQUIREMENTS
- CAPABILITIES OF FSA BLOCK V JPL LAPSS SYSTEM
- CONCERNS RELATING TO a -SILICON MEASUREMENTS
- LAPSS SYSTEM IMPROVEMENTS ADDRESSING THE CONCERNS
- OBSERVATIONS OF EXISTING LAPSS SYSTEM
- CONCLUSIONS AND RECOMMENDATIONS

Measurement System Requirements

- DATA ACQUISITION
 - HIGH RESOLUTION AND LINEARITY OF MEASUREMENTS
 - VOLTAGE AND CURRENT MEASUREMENTS TRACEABLE TO NBS
 - LONG-TERM REPEATABILITY OF MEASUREMENTS
 - DEVICE MEASUREMENTS INDEPENDENT OF LEAD RESISTANCE
 - MINIMAL APPLICATION OF BIAS VOLTAGE TO DEVICE
 - SIMULTANEOUS MEASUREMENT OF REF. CELL AND DEVICE
 - ACQUIRE TRUE DEVICE 1-V CURVE SHAPE
 - DATA CORRECTION TO DESIRED TEMPERATURE AND IN1 NSITY

PRECEDING PAGE BLANK NOT FILMED

Measurement System Requirements (Cont'd)

LIGHT SOURCE

- HIGH STABILITY OF INTENSITY LEVEL
- LONG-TERM STABILITY OF SPECTRAL IRRADIANCE DISTRIBUTION
- CLOSE MATCH OF SPECTRAL IRRADIANCE DISTRIBUTION TO THE DESIRED ASTM E 892 AM1.5 GLOBAL SPECTRUM
- LOW NON-UNIFORMITY OF IRRADIANCE AT TEST PLANE
- MINIMAL HEATING OF DEVICE

• REFERENCE DEVICE

- FAST RESPONSE TIME AND STABLE OUTPUT
- SPECTRAL RESPONSE SIMILAR TO DEVICE
- CALIBRATION DIRECTLY TRACEABLE TO SUNLIGHT MEASUREMENTS USING ACCEPTABLE ASTM METHOD

FSA Block V JPL LAPSS System Capabilities

DATA ACQUISITION

- EXCELLENT LINEARITY AND IMPROVED RESOLUTION
- FULL SCALE ACCURACY OF ±0.1% TRACEABLE TO NBS
- IMPROVED LONG-TERM REPEATABILITY, STD. DEV. ≤ 1.0%
- 4-TERMINAL CONNECTIONS TO DEVICE
- REF. CELL AND DEVICE OUTPUT MEASURED SIMULTANEOUSLY EVERY 20 μ SEC DURING LAMP FLASH
- DEVICE I-V CURVE SHAPE VERIFIABLE USING FIXED LOAD DURING LAMP FLASH
- DATA CORRECTED TO DESIRED TEMPERATURE AND INTENSITY USING PREDETERMINED DEVICE TEMPERATURE COEFFICIENTS
- ADJUSTABLE REVERSE BIAS FOR TRUE I SC MEASUREMENT

FSA Block V JPL LAPSS System Capabilities (Cont'd)

LIGHT SOURCE

- LAPSS INTENSITY STABLE TO ±0.5% WITHOUT CORRECTION
- INSIGNIFICANT CHANGE IN LAPSS SPECTRAL IRRADIANCE DISTRIBUTION THROUGHOUT LAMP LIFETIME
- NON-UNIFORMITY OF IRRADIANCE IS ≤ ± 1% OVER A 4 x 6 FT TEST PLANE AREA
- SIGNIFICANTLY SUPERIOR TO A CLASS A SIMULATOR RATING AS DEFINED BY ASTM E 927
- INSIGNIFICANT HEATING OF TEST DEVICES DUE TO SHORT PERIOD OF ILLUMINATION
- OPTICALLY FILTERED LAPSS SPECTRAL IRRADIANCE CLOSE TO DESIRED ASTM E 891 AM1.5 DIRECT SPECTRUM

REFERENCE CELL

- FAST RESPONSE, STABLE CRYSTALLINE SILICON CELL
- SPECTRAL RESPONSE SUFFICIENTLY SIMILAR TO ALL CRYSTALLINE SILICONE DEVICES
- CALIBRATION PERFORMED IN DIRECT NORMAL SUNLIGHT USING PROPOSED ASTM METHOD

Concerns Relating to Amorphous-Silicon Measurements

- POSSIBLE DEVICE DAMAGE FROM EXCESSIVE BIAS APPLIED DURING LAPSS SYSTEM TESTING
- POSSIBLE TEMPORARY SOFTENING OF I-V CURVE KNEE DUE TO LENGTHY APPLICATION OF FORWARD BIAS
- STABILITY AND RESPONSE TIME OF REFERENCE CELL
- SPECTRAL RESPONSE OF REFERENCE CELL
- SPECTRAL IRRADIANCE DISTRIBUTION OF LAPSS

Improvements in the LAPSS System that Addresses the Concerns

- NEGATIVE BIAS LIMITED TO 0.7 VOLTS WITH A PROTECTIVE DIODE
- POSITIVE BIAS OF UP TO 15 VOLTS PRESENT DURING STAND-BY PERIOD ELIMINATED BY CHANGING PROCEDURE
- FAST RESPONSE, STABLE CRYSTALLINE SILICON DEVICE CONTINUED AS REFERENCE CELL
- REFERENCE CELL NOW HAS BUILT-IN IR FILTER TO PROVIDE CLOSE MATCH TO TYPICAL
 C -SILICON DEVICES
- SPECTRAL IRRADIANCE DISTRIBUTION OF LAPSS OPTICALLY FILTERED FOR CLOSE MATCH TO ASTM E 892 AM1.5 GLOBAL SPECTRUM

Observations of Existing LAPSS System

- PROVIDES RELIABLE AND REPEATABLE MEASUREMENTS OF α-SILICON DEVICE OUTPUT
- INTERNATIONAL COMPARISON OF α-SILICON REFERENCE CELL CALIBRATION SHOWS JPL AND 6 OTHERS WITHIN 2.0% STANDARD DEVIATION OF THE AVERAGE AND JPL MEASUREMENTS NEARLY THE SAME AS SEVEPAL PARTICIPANTS
- OBTAINED LIMITED TEMPERATURE COEFFICIENT MEASUREMENTS ON SEVERAL α -SILICON MODULES USING THE LAPSS
- NEW I-R FILTERED REFERENCE CELL HAS LOW SPECTRAL MISMATCH TO A VARIETY OF a-SILICON DEVICES
- OCCASIONAL DIFFICULTY CONTACTING α-SILICON COUPONS WITH PROBES WHEN TESTING WITH LAPSS
- MOST α -SILICON I-V CURVES SHOW A 2 TO 5% SOFTENING OF KNEE AT PMAX

(4)

MODULE AND RELIABILITY TECHNOLOGY

International Comparison of Measurements of Amorphous-Silicon Reference Cell

CELL NO.	MEASUREMENTS (RATIO FROM AVERAGE)						
1	1.022	1.018	1.005	0.992	1.005	0.983	0.975
2	1.039	1.018	1.009	0.996	0.970	0.983	0.983
3	1.027	1.019	1.011	0.994	0.994	0.977	0.977
AVERAGE	1.029	1.018	1.008	0.994	0.990	0.981	0.978

Temperature Coefficients of Amorphous-Silicon Modules (17 to 32°C)

MODULE TYPE	I COEFF (μΑ/cm ² / ^o C)	E COEFF (μV/CELL/ ^O C)	K COEFF $(m\Omega/cm^2)^{O}C)$	P COEFF (%/°C)
ARCO GENESIS 100	5.5	-2672	-186	-0.15
SOVONICS TANDEM	8.2	-5216	-637	0
SOLAREX	7.2	-4356	-183	-0.14

Spectral Mismatch Parameters of Hypothetical Amorphous-Silicon Devices Versus JPL Pseudo Amorphous-Silicon Reference Cell (JPL Global Filtered LAPSS Versus Proposed New ASTM E 892 Spectrum)

	WAVELENG 50% RES	00507044	
HYPOTHETICAL CELL	UV	IR	SPECTRAL MISMATCH
1	340 nm 'TO	680 nm	0.9991
2	360 nm TO	680 nin	0.9993
3	380 nm TO	680 nm	0.9998
4	380 nm TO	700 nm	0.9992
5	380 nm TO	720 nm	0.9988

Conclusions and Recommendations

- THE VARIANCE AMONG PARTICIPANTS IN INTERNATIONAL CALIBRATION COMPARISON NEEDS TO BE INVESTIGATED.
- PRIMARY GLOBAL CALIBRATION OF REFERENCE CELLS IS NEEDED
- SINGLE-POINT LOAD TEST ALWAYS REQUIRED FOR FINDING TRUE P_{MAX}
- MULTIPLE-FLASH WITH SEGMENTED I-V DATA MAY BE DESIRABLE
- MORE RELIABLE PROBE CONTACTING METHOD FOR a-SILICON COUPONS OR USE ONLY DIRECTLY BONDED/ SOLDERED CONNECTIONS
- THE PRESENT JPL LAPSS SYSTEM APPEARS TO BE THE MOST DESIRABLE SYSTEM FOR OBTAINING ACCURATE MEASUREMENTS ON α-SILICON MODULES OF ALL SIZES